
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue1, pp-113-119 ISSN: 2249-6645

Abstract—To remain competitive in the dynamic

world of software development, organizations must

optimize the usage of their limited resources to deliver

quality products on time and within budget. This

requires prevention of fault introduction and quick

discovery and repair of residual faults. In this paper a

new approach for predicting and classification of

faults in object-oriented software systems is

introduced. In particular, cohesion is a desirable

property of software as it positively impacts

understanding, reuse, and maintenance. Currently

proposed measures for cohesion in Object-Oriented

(OO) software reflect particular interpretations of

cohesion and capture different aspects of it. Existing

approaches are largely based on using the structural

information from the source code, such as attribute

references, in methods to measure cohesion. This

paper proposes a new measure for the cohesion of

classes in OO software systems based on the analysis

of the unstructured information embedded in the

source code, such as comments and identifiers.

Index Terms— Fault Prediction; Object Oriented

Software; Conceptual Cohesion of Classes(C
3
)..

I. INTRODUCTION

Software reliability can be defined as the probability

of failure-free operation of a computer program

executing in a specified environment for a specified

time [1]. It is often considered a software quality

factor that can aid in predicting the overall quality

of a software system using standard predictive

models. Predictive models of software faults use

historical and current development data to make

predictions about faultiness of software

subsystems/modules. One of the goals of the OO

analysis and design is to create a system where

classes have high cohesion and there is low

coupling among them. These class properties

facilitate comprehension, testing, reusability,

maintainability, etc. Software cohesion can be

defined as a measure of the degree to which

elements of a module belong together [2]. Cohesion

is also regarded from a conceptual point of view. In

this view, a cohesive module is a crisp abstraction of

a concept or feature from the problem domain,

usually described in the requirements or

specifications. Although software faults have been

widely studied in both procedural and

object-oriented programs, there are still many

aspects of faults that remain unclear. This is true

especially for object-oriented software systems, in

which inheritance and polymorphism can cause a

number of anomalies and fault types [3].

Unfortunately, existing techniques used to predict

faults in procedural software are not generally

applicable in object-oriented systems.

Proposals of measures and metrics for

cohesion abound in the literature as software

cohesion metrics proved to be useful in different

tasks [4], including the assessment of design quality

[5], [6], productivity, design, and reuse effort,

prediction of software quality, fault prediction ,

modularization of software, and identification of

reusable of components [7]. Most approaches to

cohesion measurement have automation as one of

their goals as it is impractical to manually measure

the cohesion of classes in large systems. We propose

a new measure for class cohesion, named the

Conceptual Cohesion of Classes (C3), which

captures the conceptual aspects of class cohesion, as

it measures how strongly the methods of a class

relate to each other conceptually.

PRAKASA RAO DASARI
2/2 M.TECH CSE, DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI

ANDHRA PRADESH, INDIA

VASANTHAKUMARI G
ASSOC.PROFESSOR

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI

ANDHRA PRADESH, INDIA

FAULT PREDICTION IN OBJECT-ORIENTED SYSTEMS BASED

ON C3 (CONCEPTUAL COHESION OF CLASSES)

A. Class Cohesion

The components of a class are the instance variables

and methods defined in the class plus those that are

inherited. A method and an instance variable are

related by the way that an instance variable is used

by the method. Two methods are related (connected)

through inst ante variable(s) if both methods use the

instance variable(s). Class cohesion is defined in

terms of the relative number of connected methods

in the class.

B. Inheritance and Cohesion

A subclass inherits methods and instance variables

from its super class. We have several options for

evaluating cohesion of a subclass. We can (1)

include all inherited components in the subclass in

our evaluation, (2) include only methods and inst

ante variables defined in the subclass, or (3) include

inherited instance variables but not inherited

methods. The class cohesion measures that we

develop can be applied using any one of these

options.

C. Measuring Object Oriented Reuse

We focus on private reuse within one software

system [8]. We evaluate reuse from the server

perspective, since this is the best orientation for

evaluating reusability [9]. We are interested in two

different forms of class reuse, reuse via instantiation

and reuse via inheritance.

A class is reused by being instantiated in

other classes or by being inherited to them.

Instantiation reuse of a class is measured as the

number of classes where the class is instantiated.

Inheritance reuse of a class is the number of classes

which inherit the class, i.e., the number of

descendants (both direct and indirect descendants).

II. RELATED WORK

Software developers aim for systems with high

cohesion and low coupling. The value of these goals

has not been validated empirically [10]. Rather,

they have been justified on the basis of intuition.

The amount of reuse the number of times that a

component is reused is an indicator of reusability.

Of course, other factors such as the usefulness of a

component are also components of reusability.

Cohesion refers to the “relatedness” of

module components. A highly cohesive component

is one with one basic function. It should be difficult

to split a cohesive component. Cohesion can be

classified using an ordinal scale that ranges from

the least desirable category coincidental cohesion to

the most desirable functional cohesion [11]. To

apply this cohesion model to classes in

object-oriented software, we need to add a new

classification, data cohesion [8].

Bieman and Ott developed a set of

functional cohesion measures based on program

slices [12]. These measures apply only to individual

functions; their application to entire classes is not

obvious. Chidamber and Kemerer developed a Lack

of Cohesion in Methods (LCOM) measure for

object-oriented software [13]. LCOM is effective at

identifying the most non-cohesive classes, but it is

not effective at distinguishing between partially

cohesive classes. LCOM indicates lack of cohesion

only when, compared pair wise, fewer than half of

the paired methods use the same instance variables.

Recently, other structural cohesion metrics

have been proposed, trying to improve existing

metrics by considering the effects of dependent

instance variables whose values are computed from

other instance variables in the class [14], [15], [16].

Other recent approaches have addressed class

cohesion by considering the relationships between

the attributes and methods of a class based on

dependence analysis [17]. Although different from

each other, all of these structural metrics capture the

same aspects of cohesion, which relate to the data

flow between the methods of a class.

Even though these metrics were not specifically

designed for the measurement of cohesion in OO

software, they could be extended to measure

cohesion in OO systems.

III. AN INFORMATION RETRIEVAL APPROACH TO

CLASS COHESION MEASUREMENT

OO analysis and design methods decompose the

problem addressed by the software system

development into classes in an attempt to control

complexity. High cohesion for classes and low

coupling among classes are design principles aimed

at reducing the system complexity. The most

desirable type of cohesion for a class is model

cohesion [18] such that the class implements a

single semantically meaningful concept. This is the

type of cohesion that we are trying to measure in our

approach.

The source code of a software system

contains unstructured and (semi)structured data.

The structured data is destined primarily for the

parsers, while the unstructured information (that is,

the comments and identifiers) is destined primarily

to the human reader. Our approach is based on the

premise that the unstructured information

embedded in the source code reflects, to a

reasonable degree, the concepts of the problem and

solution domains of the software, as well as the

computational logic of the source code. This

information captures the domain semantics of the

software and adds a new layer of semantic

information to the source code, in addition to the

programming language semantics.

A. An example of measuring C3

To better understand the C3 metric, consider a class

c ∈ C with five methods m1, m2, m3, m4, m5. The

conceptual similarities between the methods in the

class are shown in Table 1. For the computation of

ACSM we consider all pairs of different methods,

thus ACSM(c) = 0.5. Since the value is positive,

C3(c) = ACSM(c) = 0.5. This particular value for

C3 does not indicate high cohesion for class c nor a

low one, but the CSM values from Table 1 show that

m1 and m3, m2 and m4, m2 and m5, and m4 and

m5 are closely related respectively (i.e., the CSM

between each pair is larger than C3). As one can see

in this example, CSM is not a transitive measure.

Since C3 is an average measure, we could have

situations when some pairs of methods are highly

related and other are not and the average is around

0.5. With that in mind, we refine the C3 to measure

the influence of the difference between the highly

related and unrelated pairs of methods on the

cohesion of the class.

B. An example of measuring LCSM

Consider the same class c described in section 3.3

with C3(c) = 0.5. For each method of the class c, we

compute Mi based on definition 4: M1 = {m3}, M2

= {m4, m5}, M3 = {m1}, M4 = {m2, m5}, M5 =

{m2, m4}. Table 1 shows us the intersection among

all pairs of sets Mi ∩ Mj in class c. Based on the

intersection P = {(M1, M2); (M1, M3); (M1, M4);

(M1, M5); (M2, M3); (M3, M4); (M3, M5)} and |P|

= 7. Q = {(M2, M4); (M2, M5); (M4, M5)} and |Q|

= 3. Thus, LCSM(c) = 7-3 = 4.

The two results combined indicate a lower value for

the cohesion of class c from the example. In another

situation, class c’ could have had more highly

related methods than in this case (i.e., four pairs)

and less unrelated method pairs with the same

C3(c’) value (i.e., 0.5). Assume Table 2 would

indicate 6 pairs of method sets with non empty

intersection and only 4 with an empty intersection.

The LCSM(c’) in that case would be 0. The

combined measures will indicate that c’ is more

cohesive than c.

IV. SYSTEM ARCHITECTURE

The measuring methodology for the proposed

cohesion metrics is described in Figure 1. The

following steps are necessary to compute the C3 and

LCSM metrics:

 Preprocessing and parsing of the source code to

produce a text corpus. Comments and

identifiers from each method are extracted and

processed. A document in the corpus is created

for each method in every class.

 An IR method is used to index the corpus and

create an equivalent semantic space.

 Based on the IR indexing conceptual similarities

are computed between each pair of methods.

 Based on the conceptual similarity measures, C3

and LCSM are computed for each class.

Fig 1. Measuring methodology and tools

We implemented a tool to compute C3 and LCSM

for C++ software projects in MS Visual Studio

.NET, based on the above methodology. Our source

code parser component is based on the “Visual C++

Object Extensibility Model”. Using project

information retrieved from Visual Studio .NET, the

tool retrieves parts of source code that are used to

produce a corpus. The extracted comments and

identifier are processed by elimination of stop words

and splitting identifiers that follow predefined

coding standards. The corpus is indexed by the

indexing engine, which is an implementation of

LSI. We use the cosine between vectors in the LSI

space to compute conceptual relations.

V. IMPLEMENTATION

We developed a tool IR-based Conceptual Cohesion

Class Measurement, which supports this

methodology and automatically computes C3 for

any class in a given software system. The following

steps are necessary to compute the C3 metric:

A. Corpus creation

The source code is preprocessed and parsed to

produce a text corpus. Comments and identifiers

from each method are extracted and processed. A

document in the corpus is created for each method

in every class.

B. Corpus indexing

LSI is used to index the corpus and create an

equivalent semantic space. Computing conceptual

similarities. Conceptual similarities are computed

between each pair of methods.

C. Computing C3

Based on the conceptual similarity measures, C3 is

computed for each class (definitions are presented

in the next section). IRC3Mis implemented as an

MS Visual Studio .NET addin and computes the C3

metric for C++ software projects in Visual Studio

based on the above methodology. Our source code

parser component is based on the Visual C++ Object

Extensibility Model. Using project information

retrieved from Visual Studio .NET, the tool

retrieves parts of the source code that are used to

produce a corpus. For software projects that are

developed outside the .NET environment, that is,

Mozilla from our case study, we use external parsers

and a set of our own utilities to construct the corpus.

The extracted comments and identifiers are

processed in the elimination of stop words and

splitting identifiers that follow predefined coding

standards. We use the cosine between vectors in the

LSI space to compute conceptual relations. A Java

version of the tool is being developed as an Eclipse

plug-in.

VI. RESULTS

First, we performed the univariate logistic

regression The R2 coefficient is defined as the

proportion of the total variation in the dependant

variable y (the fault proneness of a class) that is

explained by the regression model. The bigger the

value of R2, the larger the portion of the total

variance in y that is explained by the regression

model and the better the dependent variable y is

explained by the explanatory variables.

In order to evaluate logistic regression

models based on the studied metrics and their

combinations, we utilize the following quantitative

characteristics: precision, correctness, and

completeness. We use these measures to be

consistent with previously published results [19,

20]. Note that these characteristics of the results are

somewhat different from the precision and recall

measures used in IR.

Precision here is used to evaluate how well

the model classifies faulty and nonfaulty classes.

For example, C3 used as a separate explanatory

variable in the univariate logistic model classified

1,267 (667 as nonfaulty + 600 as faulty) classes

correctly out of 2,042 classes for Mozilla, that is, a

precision of 62.05 percent (see Table 4). The results

of the univariate logistic regression indicate that the

model based on C3 is better than any other model

except that of LCOM3.

Correctness is used to show what

percentage of the faulty predicted classes is really

faulty (computed as the number of classes observed

and predicted as faulty divided by the total number

of classes predicted as faulty). In the case of the

univariate logistic regression model based on C3,

the correctness is 61.35 percent since it suggested

978 classes as containing faults, but, in fact, only

600 of those have faults. Fig 2,34 shows the C out

put file, C++ out put file and JAVA out put file

respectively.

Fig 3 C OUTPUT File

Fig 4 C++ OUTPUT File

Fig 5 JAVA OUTPUT File

VII. CONCLUSIONS

Classes in object-oriented systems, written in

different programming languages, contain

identifiers and comments which reflect concepts

from the domain of the software system. This

information can be used to measure the cohesion of

software. To extract this information for cohesion

measurement, Latent Semantic Indexing can be

used in a manner similar to measuring the

coherence of natural language texts. Our results

show that the classes that are heavily reused via

inheritance exhibit lower cohesion. We expected to

find that the most reused classes would be the most

cohesive ones. Studies of additional software

systems are needed to confirm these results.

Future Work

The C3 metric depends on reasonable naming

conventions for identifiers and relevant comments

contained in the source code. When these are

missing, the only hope for measuring any aspects of

cohesion rests on the structural metrics. In addition,

methods such as constructors, destructors, and

accessory may artificially increase or decrease the

cohesion of a class. Although we did not exclude

them in the results presented here, our method may

be extended to exclude them from the computation

of the cohesion by using approaches for identifying

types of method stereotypes. C3 does not take into

account polymorphism and inheritance in its

current form. It only considers methods of a class

that are implemented or overloaded in the class.

One way in which we can extend our work to

address inheritance when building a corpus is to

follow the approach in, where the source code of

inherited methods is included into the documents of

derived classes.

References
[1] J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability

Measurement, Prediction, Application. the United States of

America: McGraw- Hill Book Company, 1987.

[2] J. Bieman and B.-K. Kang, “Cohesion and Reuse in an Object-

Oriented System,” Proc. Symp. Software Reusability, pp.

259-262, Apr. 1995.

[3] J. Offutt and R. Alexander, “A fault model for subtype

inheritance and polymorphism,” in 12th International

Symposium on Software Reliability Engineering, November

2001, pp. 84 – 95.

[4] D. Darcy and C. Kemerer, “OO Metrics in Practice,” IEEE

Software,vol. 22, no. 6, pp. 17-19, Nov./Dec. 2005.

[5] J. Bansiya and C.G. Davis, “A Hierarchical Model for Object-

Oriented Design Quality Assessment,” IEEE Trans. Software

Eng., vol. 28, no. 1, pp. 4-17, Jan. 2002.

[6] L.C. Briand, J. Wu¨ st, J.W. Daly, and V.D. Porter, “Exploring

the Relationship between Design Measures and Software

Quality in Object-Oriented Systems,” J. System and Software,

vol. 51, no. 3, pp. 245-273, May 2000.

[7] J.K. Lee, S.J. Jung, S.D. Kim, W.H. Jang, and D.H. Ham,

“Component Identification Method with Coupling and

Cohesion,” Proc. Eighth Asia-Pacific Software Eng. Conf.,

pp. 79-86, Dec. 2001.

[8] N. Fenton. Soflware Metrics - A Rigorous Approach. Chapman

and Hall, London, 1991.

[9] J. Bieman. Deriving measures of software reuse in

object-oriented systems. Proc, BCS-FA CS Workshop on

Formal Aspects of Measurementj pp. 79–82.

Springer-Verlag, 1992.

[10] N. Fenton, S.L. Pfleeger, and R. Glass. Science and substance:

a challenge to software engineers. IEEE Sofiware,

11(4):86-95, July 1994.

[11] E. Yourdon and L. Constantine. Prentice-Hall, Englewood

Cliffs, Structured Design.NJ, 1979.

[12] J. Bieman and L. Ott. Measuring functional cohesion. IEEE

Trans. Software Engineering, 20(8) :644–657, Aug. 1994.

[13] S. Chidamber and C. Kemerer. A metrics suite for object

oriented design. IEEE Trans. Soflware Engineering,

20(6):476–493, June 1994.

[14] H.S. Chae, Y.R. Kwon, and D.H. Bae, “Improving Cohesion

Metrics for Classes by Considering Dependent Instance

Variables,” IEEE Trans. Software Eng., vol. 30, no. 11, pp.

826-832, Nov. 2004.

[15] Y. Zhou, L. Wen, J. Wang, Y. Chen, H. Lu, and B. Xu,

“DRC: A Dependence-Relationships-Based Cohesion

Measure for Classes,” Proc. 10th Asia-Pacific Software Eng.

Conf., pp. 215-223, 2003.

[16] Y. Zhou, B. Xu, J. Zhao, and H. Yang, “ICBMC: An

Improved Cohesion Measure for Classes,” Proc. 18th IEEE

Int’l Conf. Software Maintenance, pp. 44-53, Oct. 2002.

[17] Z. Chen, Y. Zhou, B. Xu, J. Zhao, and H. Yang, “A Novel

Approach to Measuring Class Cohesion Based on

Dependence Analysis,” Proc. 18th IEEE Int’l Conf. Software

Maintenance, pp. 377- 384, 2002.

[18] J. Eder, G. Kappel, and M. Schreft, “Coupling and Cohesion

in Object-Oriented Systems,” technical report, Univ. of

Klagenfurt, 1994.

[19] V.R. Basili, L.C. Briand, and W.L. Melo, “A Validation of

Object- Oriented Design Metrics as Quality Indicators,” IEEE

Trans. Software Eng., vol. 22, no. 10, pp. 751-761, Oct.

1996.

[20] T. Gyimo´thy, R. Ferenc, and I. Siket, “Empirical Validation

of Object-Oriented Metrics on Open Source Software for

Fault Prediction,” IEEE Trans. Software Eng., vol. 31, no. 10,

pp. 897-910, Oct. 2005.

